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概 念 CONCEPT

Multimodal Named Entity Recognition

It can improve text-based named entity recognition (NER) by using images as 

additional input. When text information is insufficient, image information can 

help identify ambiguous named entities.



举 例 EXAMPLE

image

text Handsome Rob after a fish dinner it is difficult for us to infer the type of 

named entity Rob. It may describe a 

person or an animal. With the help of its 

accompanying image ，we can easily 

determine that its type is MISC

（other）.

There are four types of entities: Person 

(PER),Organization (ORG), Location 

(LOC) and others (MISC).



引 言 INTRODUCTION

Current research and existing problems:

They mainly focus on using a cross-modal attention mechanism to combine text representation with image 

representation.

• the current methods are based on a strong assumption that each text and its accompanying image are 

matched, and the image can be used to help identify named entities in the text.

• the current methods fail to construct a consistent representation to bridge the semantic gap between two 

modalities, which prevents the model from establishing a good connection between the text and image.



引 言 INTRODUCTION

To address these issues:

propose a general matching and alignment framework (MAF)

a cross-modal matching (CM) module：

                           ——  reduce the impact of mismatched text-image pairs.

a cross-modal alignment (CA) module：

                           ——  help the model to align the text and image representations.



概 观 OVERVIEW



方 法 METHOD

Input Representations

• Text Encoder • Image Encoder
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方 法 METHOD

Cross-Modal Alignment Module

• the effect of contrastive learning  is mainly affected by the 

number of negative examples.

• this MLP projection can help the encoders (BERT and 

ResNet) to learn a better representation.

• By minimizing two contrast loss functions, we can maximize 

the similarity of positive cases and minimize the similarity of 

negative cases.

ℒ�
(��→��) =−log

�(���(��� ,��� )/�)

 �=1
� �(���(��� ,��

�)/�)

ℒ�
(��→��) =−log

�(���(��� ,��� )/�)

 �=1
� �(���(��� ,��

�)/�)

ℒ�� =
1
�
 
�=1

�

(��ℒ�
(��→��) + (1 − ��)ℒ�

(��→��))



方 法 METHOD

Cross-Modal Interaction Module

• Queries

• Key-value pairs
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方 法 METHOD

Cross-Modal Matching Module
• Randomly select 2�  (0 < k < N/2) input pairs from the 

batch and swap the image representations of the first half 

in the input pairs with the second half as the negative 

examples. Moreover, the remaining �  −2�  input pairs in 

the batch are positive examples.

• Use the generated training example to train the CM module.
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方 法 METHOD

Cross-Modal Fusion Module

• use a gate mechanism to dynamically control the 

combination of text and image representations at 

the token level.
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方 法 METHOD

CRF Decoder
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实 验 Experiments
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